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Abstract

�iswork present static analysis techniques for the π language.

We discuss the distinguishing concepts of π, namely program

annotations in First Order Logic, and its ability to automati-

cally check these program annotations (when operating in de-

cidable FOL theories). �e process automatically infering FOL

annotations by static analysis is problematic because of non-

termination issues for all except trivial cases. Interval Analysis

and Karr’s Analysis are examples of other domains of reason-

ing that do not exhibit the problematic preciseness of FOL that

prevents the static analysis procedure from terminating in the

general case.

1 �e Language π

Pi(π) is a turning-complete imperative programming
language in the syntactic spirit of Java that augments
the language with powerful compile-time checked pro-
gram annotations. π’s annotations use First-Order Logic
(FOL) to specify behaviour of functions and loops and
by utilizing only decidable fragments of FOL theories,
the compiler can check these annotations automatically.
�e simple π-program LinearSearch demonstrates

searching an array a for an element e.

bool LinearSearch (int [] a, int e) {

for @ T

(int i:= 0: i < |a|; i:=i+ 1) {

if(a[i]==e) return true ;

}

return false;

}

Clearly, this function returns true when the given array
contains the element and returns false otherwise. �e
last sentence formulates a semantic insight about the
program that no experienced programmer would have��is term paper is based on [BM07], Chapter 12 and this paper’s
�ndings shall not be confused with novel �ndings of the author

trouble concluding. However, it is not resembled by any-
thing found in the source code of this pi program. By in-
specting the abstract source tree, all we are able to see is
a loop containing a return statement guarded by a con-
ditional, and a default return statement. �e process of
reaching conclusions about the semantics of a function –
even if they are so trivial as in this case – require human
ingenuity.
In π, the programmer turns that semantic insights

into actual source code by annotating function declara-
tions with @pre and @post assertions expressed in FOL.
For both assertions, the formal function parameters are
available for reasoning. Additionally, @post can use a
special variable called rv to reason about the function’s
return value.
Formulating a precondition for LinearSearch is pretty

easy. To work properly, LinearSearch does not require a
or e to ful�ll certain predicates.1 Hence, we just require
true to be valid as precondition (which it trivially is). �e
following formula captures the semantic insight formu-
lated above, namely that if and only if LinearSearch re-
turns true the array a contains the element e.

rv� § j � 0 B j � SaS , a� j� � e (1)

Type systems have a long history in static analysis and
as recent developments have shown, comfortable type
inference is possible without much programmer inter-
vention. Is such a comfort also possible for speci�cations
like? �e answer for the general case is no. When used
with a precise speci�cation domain such as FOL, the
turing-completeness of π prevents the inference process
from terminating. At the limit it would produce a spec-
i�cation that is complete and correct but this method of
reason is operationally infeasible. Human intervention
is in general necessary to deliver these limit constructs

1Except that a is an integer array, while e is an integer. Other lan-
guages unify the concept preconditions and types into a single systems.
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@pre true

@post rv � § j � 0 B j � SaS , a� j� � e

bool LinearSearch (int [] a, int e) {

for @ true

(int i:= 0: i < |a|; i:=i+ 1) {

if(a[i]==e) return true ;

}

return false;

}

Figure 1: LinearSearch annotate with @pre, @post

by hand and the compiler then takes the responsibility
for checking these annotations.

2 Static Analysis: Veri�cation

Verifying programs that contain only boolean values as
�rst-class citizens is easy. We simply check that the post-
condition holds for all possible boolean assignment for
which the precondition holds. Actually we exhaustively
interpreted the program for all possible program states.
But as soon as we admit integers, higher-order functions
or any other data type with an in�nitely large domain,
checking postconditions by exhaustive interpretation is
infeasible as it implies an in�nite amount of work.

Symbolic interpretation is an alternative to that. In-
stead of working with values, we replace variable con-
tent by symbols. �e cost of this is that most of the time
we are not able to decide whether a condition holds or
not. �erefore we must consider both outcomes, and
fork the interpretation into two branches, one that as-
sume the guard holds and one that assumes the guard
does not hold. As this e�ectively removes all �ow con-
trol constructs, the branches inspected only contain as-
sumptions or assignments. To give a simple example,
Figure 2 contains a function that computes the absolute
value with the help of a conditional.

Instead of checking whether a @post-predicate p�rv�
holds a�er executing return e, it is equally e�ective to
check whether p�e� holds right before the return state-
ment. In this case, we have to check x C 0 at (*) in the
source. To verify whether the @pre-condition implies
this, we have to consider two cases, namely when x � 0
and when x º 0.

Two branches are created and both have the task to
proof that the postcondition is implied by the precondi-
tion and the function’s statements. �ese are called ver-

@pre true

@post rv >= 0

int abs(int x) {

if(x < 0)

x:=-x;

// (*)

return x;

}

Figure 2: abs computes the absolute value

i�cation conditions (VC) and are written with the pre-
and postconditions enclosing the statements,�true�assume x � 0; x:=-x�x C 0�
and �true�assume x ¸ 0�x C 0�
�e latter branch seems trivial even whenwe have not

formalised the semantic of assume statements. How-
ever to reason for the �rst branch, we need to intro-
duce the concept of predicate transformers to inspect
how assumptions and assignments interact. Two trans-
formers are available for this job: the weakest precondi-
tion transformer for moving conditions upward in the
stream of statements, and the strongest postcondition
transformer for moving predicates downward. To en-
sure that these transformers only generate valid pre- and
postconditions, we must de�ne what preconditions and
postconditions must ful�ll to be valid.

F � is a valid postcondition for F and S, if whenever
S is executed on states that ful�ll F , the resulting states
ful�ll F �. More concisely,

s à F � �s� > S�s�.s� à F � (2)

for all states s.2 �emost trivial postcondition is true. It
is too weak as we can not construct any useful implica-
tion from true as antecedent.

With respect to a statement S and a formula F �, a pre-
condition F is valid when for all states that ful�ll F , the
states also ful�ll F � a�er they were modi�ed by the state-
ment S. �is reads very similar to the de�nition of a
postcondition, only from the other perspective. In fact,
we can use the same characterization 2. When we use
S�1�s� as the set of values that have s as their image in S,

2S(s) contains just one element if the language is deterministic,
which π is
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we can give an alternative characterization for precondi-
tions,

s à F � � �s� > S�1�s�.s� à F

Notice that this characterization is also valid for post-
conditions.
false is the strongest and most trivial precondition as

it valid for all possible F �, and S. It is undesirably strong
and preconditions getmore useful when they get weaker.
By focusing on the weakest precondition, we guarantee
that we gained as much as possible information about
the predecessors states of a formula.

�epredicate transformerswp and sp are de�ned over
assumption and assignment statements. �e weakest
precondition transformer wp is de�ned for assumptions
as.

wp�F , assume c� �� c � F

If we know that a�er passing a guard that enforced c, the
predicate F holds, then we know that before the guard
c � F holds, namely F holds in the event that c holds.

wp�F�v�, v:=e� �� F�e�
If a formula F�v� over a variable v holds a�er the variable
received its value from an expression e then the formula
must also hold before that statement when we apply it
directly the expression e as with F�e�. �eweakest pred-
icate is de�ned recursively over a sequence of statements
processing the last statement �rst:

wp�F , S1 . . . Sk� �� wp�wp�F , Sk�, S1; . . . ; Sk1�
�e strongest postconditions for FOL formulas are

derived as follows:

sp�F , assume c� �� c , F

Moving over assumption statements practically means
moving into one branch of a conditional. To re�ect that
in the formula, we simply add the knowledge that the
conditional’s guard holds.

sp�F�v�, v �� e� �� §v0 � v � e�v0� , F�v0�
If formulas holds for a value and this value gets trans-
formed by the expression e, then the formula must hold
for at least one inverses of the new value under the ex-
pression e. For formulas over expressions that have

unique inverses in the underlying theory, the existential
quanti�er can be removed and thewhole formula rewrit-
ten to F�e�1�v��. For instance, sp�F�x�, x �� x � 1� �
F�x � 1� , x � x0 � 1.

For a sequence of statements, the strongest postcon-
dition is de�ned recursively starting with the �rst state-
ment,

sp�F , S1 . . . Sk� �� sp�sp�F , S1�, S2; . . . ; Sk�
Now we are �t to return to the veri�cation task�true�assume x � 0;x:=-x�x C 0�. Using wp and sp

we can either move x C 0 backwards with the help of wp
and check whether

true � wp�wp�x C 0, x �� �x�, assume x � 0�
holds, or we can move true towards x C 0 with the help
of sp and check

sp�sp�true , assume x � 0�, x �� �x�� x C 0.

For demonstration, we can mix these two approaches to
check

sp�true , assume x � 0�� wp�x C 0, x �� �x�
�e antecedent turns into true , x � 0, while the con-
clusion turns into �x C 0. Simplifying the �rst in FOL
and the second in the underlying theory gives, x � 0 �
x � 0, which is valid. Hence, we succeeding in verifying
the @post condition of abs. Notice that we veri�ed the
implication of the postcondition from the precondition
for all paths in abs.

3 Basic Paths & Inductive Assertion

When we relabel the @pre-condition with πs and the
@post-condition with πe , the approach in the last sec-
tion formalizes as

p > P�s, e� � sp�πs , p� � πe .

�e function obeys it speci�cation if for all paths from s
to e the strongest postcondition of the precondition im-
plies the function’s post condition.

We ful�lled this proof obligation exactly this way
when proving the postcondition of abs and it was quite
easy, as there are only �nitely many paths. In the gen-
eral case involving loops, however, the number of paths
through a �ow graph is – from a static point of view –
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1© 2©

3©

4©

assume i � SaS;
assume a[i] x e;
i:=i+1

assume i � SaS;
assume a[i] = e;
rv := true

assume i ¸ SaS;
rv := false

i:=0

Figure 3: �e �ow graph of LinearSearch

in�nite, SP�s, e�S � ª. �e �ow graph3 of LinearSearch
given in Figure 3 demonstrates this problem, as its sim-
ple loop over the array creates an in�nite number of
paths. �e check-all-paths approach fails here.
To cut down this in�nite amount of work to a �nite

amount, the verifying compiler limits its scope of oper-
ation to non-looping subparts. It only checks paths of
the �ow graph that start and end with a loop or with
the functions start/end. In this examples these paths are
1©- 2©, 2©- 2©, 2©- 3©, 2©- 4©. �ey are basic in the sense
that all other paths through the �ow graph can be put to-
gether from these paths as building blocks. Hence, these
paths are called basic paths. �is work load reduction
does not come for free. For this technique to work we
need to provide assertion at every �ow graph cut.
Before applying this technique we proof it correct.

�erefore we introduce a bit of helpful notation: P�s, e�
denotes the set of all path from the node s to e. `s, . . . , ee
is an element of this set. `s, . . . , n, . . . , ee is a path that
does not pass by the node n – that is, the path does not
contain n as node except maybe as start and end point.`s, �. . . , n�i , . . . , ee is a path that passes by the node n
i-times.

Lemma 1. If
a � b

then
sp�a, p�� sp�b, p�

3Notice this �ow graph does not contain any �ow control con-
structs. Its paths solely consists of assume and assign statements.

Proof. By the de�nitions of sp.

Lemma 2. If sp is a valid strongest postcondition trans-
former and

sp�x , `a, . . . , be�� y

sp�y, `b, . . . , ce�� z

then

sp�x , `a, . . . , b, . . . , ce�� z

for the combined path.

Proof. From sp�x , `a, . . . , b, . . . , ce� deduce
sp�sp�a, `a, . . . , be�, `b, . . . , ce� by the recursive
de�nition of sp. Weaken the inner sp expression to y by
applying Lemma 1. z follows directly from the resulting
expression with the second assumption.

Lemma 3. If�p > P�s, n� � �p � `s, . . . , n, . . . , ne , sp�πs , p�� � πn� ,�p > P�n, n� � �p � `n, . . . , n, . . . , ne , sp�πn , p�� � πn�
then �p > P�s, n� � sp�πs , p�� πn

Proof. Inductive proof on the number of occurrences of
n in p. Assume p � `s, �. . . , n�ie. i � 1 by the �rst as-
sumption. We use the induction hypothesis

sp�πs , `s, �. . . , n�ie�� πn ,

and the second assumption as the assumptions for
Lemma 2 to conclude

sp�πs , `s, �. . . , n�i�1e�� πn .

�eorem 4. If�p > P�s, e� � �p � `s, . . . , n, . . . , ee , sp�πs , p�� � πe� ,�p > P�s, n� � �p � `s, . . . , n, . . . , ne , sp�πs , p�� � πn� ,�p > P�n, n� � �p � `n, . . . , n, . . . , ne , sp�πn , p�� � πn� ,�p > P�n, e� � �p � `n, . . . , n, . . . , ee , sp�πn , p�� � πe�
then �p > P�s, e� � sp�πs , p� � πe
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Proof. Assume p � `s, �. . . , n�i , . . . , ee. �e �rst as-
sumption justi�es the case i � 0. For i C 1, we use the
second and third assumption to apply Lemma 3 to con-
clude sp�πs , `s�. . . , n�ie � πn . �is in conjunctionwith
the last assumption, serves as assumption to Lemma 2 to
give sp�πs , p� � πe .

�e validity of the basic path veri�cation method is a
corollary of this theorem. Any node in the �ow graph
of a Pi-program is the start of a loop, so when we apply
the theorem for every node, we end up with proof obli-
gations equivalent to our veri�cation conditions around
basic paths. Note that the last theorem is not only valid
for �ow graphs constructed from Pi-programs but for
arbitrary shaped programs. Also graph cutting can start
at inner loops as the proof obligation for paths from n to
n does not only involve the loop body but also cycles of
any outer loop even around involving s and. e.

�anks to �eorem 4 we can replace an in�nite
amount of paths involving 2©, such as 1©- 2©-. . . , 1©- 2©-
2©-. . . , 1©- 2©- 2©- 2©-. . . by the proof obligations of�e-
orem 4. Ful�lling the �rst requirement, `s, . . . , n, . . . , ee,
is easy, because this path set is empty as there are no
paths that do not pass over n. �e second theorem re-
quirement demands a check for 1©- 2©, the third for a
check for 2©- 2©, and the last requirement two checks:
2©- 3© and 2©- 4©. �ese paths are exactly the set of basic
paths for this �ow graph. But where does the assertion
πn come from to generate the veri�cation conditions?
�eorem 4 itself does not give any hints.

We can use the requirement for the path 1©- 2© as a
guide and just use the strongest postcondition of 1© as
πn , so the required implication holds. sp�true , i �� 0�
asserts i � 0 at 2© when arriving from 1©. However, this
choice as πn is problematic, as the next proof require-
ment for the path 2©- 2© is not ful�lled. �e VC�i �� 0�assume . . .; assume . . .; i:=i+1�i �� 0�
is invalid. We need a stronger predicate πn to start with,
so that we can validate the VC from 2© to 2©, and further
proof the postcondition at 3© and 4©.

As we demonstrate later, a suitable assertion can not
be found automatically and the programmer has to sup-
ply an assertion by annotating the loop. If theVCaround
the loop is valid and further supports the postcondi-
tions, we call the predicate inductive. Notice, that many
trivial predicates are inductive when we look only at the
loop body. For instance, the @post-condition would not

be derivable from the assertion true which is clearly in-
ductive but only with respect to the loop body. A predi-
cate that is su�ciently strong is� j � 0 B j � i � a� j� x e

Looking at all the proof obligations reveals, that this
assertion is indeed inductive and supports the post con-
dition. We only review the reasoning for 2©- 2©.� j � 0 B j � i � a� j� x e

assume i < |a|;

assume a[i] != e;

i := i+1;� j � 0 B j � i � a� j� x e

Moving the precondition forward with sp over the
two assumption statements gives:� j � 0 B j � i � a� j� x e , i � SaS , a�i� x e

i:=i+1;� j � 0 B j � i � a� j� x e

�e �nal step gives:� j � 0 B j � i � a� j� x e

assume i < |a|;

a�i� x e � � j � 0 B j � �i � 1� � a� j� x e

We can drop the last assumption as it does not support
the conclusion. We arrive at� j � 0 B j � i � a� j� x e ��a�i� x e � � j � 0 B j � �i � 1� � a� j� x e�
which is valid. We can verify that the VC for 2©- 3© and
2©- 4© holds by using a similar reasoning with wp and
sp.
Oncewehave a potentially inductive assertion, check-

ing it can be fully automatic, when we stick to decidable
fragments of FOL.

4 Intuition for preconditions and

postconditions

Diving into the non-trivial forward propagation algo-
rithm in the next section is easier when we have an
intuitive idea how predicates relate to each other with
terms like weaker/stronger and how to derive weak-
en/strengthen predicates. Figure 4 gives an oversimpli-
�ed two dimensional representation of predicates.�e
objects on this pane are states that ful�lls predicates
when they are encircled by them. Predicates e�ectively
model sets and when we draw them in set-diagram style
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F

G

true

H

weaken

strengthen

Figure 4: �e space of state predicates

like in Figure 4, the relationships between predicates are
the same as between sets. �e subset relations is cap-
tured by the implication, union by logical or, and inter-
section by logical and. �e most trivial predicate true is
equal to the universe of discourse as it admits all states to
its set. �e smallest element is the false predicate which
is equal to the empty set. As the empty set is a subset of
every other set, false trivially implies every other predi-
cate. Validating the implication G � F checks whether
G is stronger then F (or whether F is weaker than G re-
spectively).

Figure 5 gives an idea how weak/strong pre/postcon-
ditions relate to each other. Inspecting the diagram for
the strongest postcondition on the right side, let us de-
duce that if we have a valid postcondition then we are
able to proof any other postcondition to be valid if we
can show that it is weaker than our original. We do
that by implication checking – or if we want to stick to
the set-theoretic description by superset checking. By
choosing the strongest postcondition (the smallest in
cardinality), we e�ectively describe all valid postcondi-
tions under implication.

Likewise, a valid precondition always implies the va-
lidity of stronger preconditions. By choosing the weak-
est precondition, we e�ectively describe all valid precon-
ditions with the inverse implication, or subset checking.

5 Forward Propagation

Focusing only on basic paths succeeds in solving the ver-
i�cation problem with the help of human ingenuity to
provide the respective inductive assertions at loops. But
is there a heuristic that at least in some cases come up

p

wp(F,S)
F

s

S(s)

S

F

sp(F,S)

q

S
s

S(s)

Figure 5: Weakest precondition with stronger predicate
p and strongest postcondition with weaker predicate q

with the strongest @post-condition of a function on its
own? A possible naive strategy for this would be to push
down the strongest postcondition from the entry nodes
until we reached all exit nodes, and then join the condi-
tions at the exit nodes by - to deduce the strongest post-
condition. For �ow graphs without loops or with loops
that can be unrolled this approach works quite well. But
how about the general case?

Before we investigate on how to construct a solution,
we have to gain some insight into how to verify a pro-
posed solution. Assume a proposed solution is given as
a function π that maps nodes into assertions. We call
this function assertion hypothesis. If it contains a node
assertion that is not implied by the strongest postcon-
dition that arrives from one of the node’s predecessors,
then we successfully falsi�ed the hypothesis. If we can
not �nd such a node then we have a valid solution.

Figure 6 models these two situations. We assume p
is the assertion at the node currently inspected, F is
the assertion of one of the predecessors and sp�F , S�
the strongest postcondition computed from the state-
ments on the path coming from the predecessors. On
its le� side the current assertion p is a proper one, as
the strongest postcondition arriving from F is inside of
the set of states described by p. Hence, there is noth-
ing contradicting the validity of p at the node inspected.
On the right hand side, we see a successful falsi�cation.
�e strongest postcondition is not a subset of the states
described by p.

In general, if we have an initial solution, a veri�ca-
tion procedure and an improvement procedure, we can
easily construct an algorithm that iteratively computes
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F

sp(F,S)

q

S

F

sp(F,S)

q

S

Figure 6: Le�: All states implied by the strongest post-
conditions are covered by q. Right: Not all states are cov-
ered. qmust be weakened.

solutions.4 To apply this technique, we identify the triv-
ial initial hypothesis, that maps all nodes to false, except
the start node, which is mapped to @pre. If we have false
as node assertion, this can be read as the assertion that
this node is unreachable for the control �ow, namely its
predecessors and successor paths contain dead code.
When the veri�cation procedure falsi�ed our hypoth-

esis, we can retry with an improved hypothesis. Assume
the veri�cation procedure rejected the hypothesis be-
cause for some node b

sp�πa , `a, be�� πb .

We can improve π by replacing πb with
πb - sp�πa , `a, be�. �is makes the assertion weaker
and allows for more states, e�ectively covering the states
implied by predecessor’s strongest postconditions.
Hence the implication that failed to hold, now holds.
Let us see this approach in action with a simple exam-

ple. We create a limited version of linear search in Fig-
ure 7 that is only able to search the �rst three elements of
a list.5 �e �ow graph of LimLinSearch given in Fig-
ure 8 is identical to LinearSearch’s �ow graph. It also
contains the troublesome loop, but now bounded by 3
instead SaS. In Figure 8, we replaced the nodes with the
initial hypothetical assertions.
Our �rst target for falsi�cation is the assertion of node

2©. Coming from 1©, we compute sp��, i �� 0� which is
i � 0. As � does not imply i � 0 we have to adjoin i � 0

4Termination is not guaranteed
5We intentionally omit the requirement that the list contains at

least three elements.

@pre true

@post ??

bool LimLinSearch (int [] a,int e) {

for (int i:=0; i<3; i:=i+1) {

if(a[i]==e) return true ;

}

return false;

}

Figure 7: Limited Linear Search

� � ��

assume i � 3;
assume a[i] x e;
i:=i+1

assume i � 3;
assume a[i] = e;
rv := true

assume i ¸ 3;
rv := false

i:=0

Figure 8: Initial state for forward propagation in Lim-
LinSearch

to � by - to improve the hypothesis. i � 0 - � simpli�es
to just i � 0 which becomes the new assertion for 2©.

As we changed the assertion at 2©, new potential fal-
si�cation targets pop up, namely the successors of 2©,
nodes 3©, 4© and 2© itself. As we have to conduct a few
iterations of pushing results from 2© to 2©, we wait with
processing 3© and 4© until we are �nished with 2©.

Computing the strongest postcondition for i �� 0 un-
der the statements

assume i<3; assume a[i]xe; i:=i+1

gives

i �� 1 , �i � 1� � 3 , a��i � 1�� x e , (*)

which simpli�es to i �� 1 , a�0� x e. �e current asser-
tion at 2©, i �� 0 does not imply (*). Hence, we have to
weaken the assertion at 2© and turn it into

i �� 0 - �i �� 1 , a�0� x e�.
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A�er another propagation from 2© to 2©, we get�i �� 1 , a�0� x e� - �i �� 2 , a�0� x e , a�1� x e�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
P

,

of which only the �rst part is supported by the assertion
at 2©, but P is not. Hence, we weaken the assertion at
2© and adjoin P to the assertion of 2© by a logical or.
Another round of propagation at 2© gives:�i �� 1 , a�0� x e� - �i �� 2 , a�0� x e , a�1� x e�-�i �� 3 , a�0� x e , a�1� x e , a�2� x e�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

P

(**)

Again the assertion of 2© supports only the �rst parts
of this postcondition, but not P. Hence, it is added with
logical or as before.
�e next iteration from 2© to 2© is di�erent as we

reached the statically known bound for the loop variable
i. With previous iterations, we have seen that comput-
ing the strongest postcondition always rediscovers parts
that are already at 2© and a new --connected fragment.
At our current iteration, the rediscovered part is exactly
(**) while the new yet unsimpli�ed fragment is

i � 4 , �i � 1� � 3 , a�i � 1� x e

But in contrast to previous iterations, this formula is un-
satis�able, hence it simpli�es to false. So, we have to
check whether�(**) - ��� �i � 0 - (**)�.
As this implications is valid, we reached a �xed point
under this process at 2© with the �nal assertion at 2©
being����� �i � 0�- �i � 1 , a�0� x e�- �i � 2 , a�0� x e , a�1� x e�- �i � 3 , a�0� x e , a�1� x e , a�2� x e������ ( †)

We can continue with checking 3© and 4©. Propa-
gating ( †) over assume i � 3; assume a�i� x e;
rv:=true gives,

( †) , rv � true , a�i� � e , i � 3

We can simplify this by noticing that i can only be 0, 1, 2.
Expanding all cases of i in a�i� � e and dropping the

case i � 3, results in

rv , �a�0� � e - �a�0� x e , a�1� � e�-�a�0� x e , a�1� x e , a�2� � e��
We proceed likewise for the postcondition of 4©.
�e strongest postcondition over assume i ¸ 3;
rv:=false gives

( †) , i ¸ 3 ,  rv
From ( †) only the last fragment is valid in conjunc-

tion with i C 3, hence we get rv , i �� 3 , a�0� x e , a�1� x e , a�2� x e--connecting the conditions at 3© and 4© and drop-
ping the internal variable i gives us the strongest func-
tion’s postcondition.

6 �e algorithm and its Termination

Criteria

What we have done informally in the last example, is
captured in the forward propagation algorithm given in
ML syntax in Figure 9.
For a node n, p1 n ss ah ws pushes down the re-

spective strongest postconditions to all successors of n
contained in the list ss. When �nished, p1 returns a tu-
ple �ah�,ws�� of the new assertion hypothesis ah� and
a new workset ws�. ws� is the original workset ws plus
all nodes that received new assertions. In Line 5, p1
checks whether a successor node needs new assertion
or whether the existing one q su�ces. If q is implied by
the newly propagated strongest postcondition p, there
is no further work for this successor (Line 6). In Fig-
ure 6, this is the case on the le� side. If q is not implied
by p, then the strongest postcondition covers states that
are not in q (right side in Figure 6). q must be weak-
ened to support these states by adjoining the strongest
postcondition with logical or. We change the assertion
q at the successor node with the help of function mod

which modi�es ah such that (mod ah node ass) node =
ass. Additionally, the successor is put into the workset,
so that the newer and weaker assertion can be pushed
down further to the successors of this successor.
As long as nodes need inspection – that is the main-

tained workset ws is non-empty – p* carries out pushes
for these nodes by calling p1. �e initial call is

p* ((mod a� e pre), (e::nil))



7. APPLIED ANALYSIS: INTERVAL ANALYSIS 9

1 p1 nil w ah ws ’ = (ah , ws ’)

2 | (s::ss) w ah ws ’ =

3 let val p = (spA (ah w) (path w s))

4 val q = (ah s)

5 in if (�A p q) then

6 p1 ss ah w ws ’

7 else

8 p1 ss (mod ah s (�A p q))

9 w (s::ws ’)

10

11 p* (ah , nil) = ah

12 | (ah , w :: ws) =

13 p* (p1 w (succ w) ah ws)

Figure 9: Forward Propagation

where a� is a function so that �n � a� n � �A, e is the
entry node and pre the function’s @pre-condition. If this
expression ever �nishes evaluating, p* returns a valid as-
sertion map that contains the strongest postconditions
at exit nodes with inductive assertions at loop nodes.
�e forward propagation acts upon a static analysis

algebra. Such an algebra A needs a carrier set D with
functions de�ned over the following signatures:

sp �� D � S� � D � �� D��� D� D� B � �� D� �� D � D � D

where S is the set of valid statements, and B the set of
boolean values. sp is the strongest postcondition trans-
former. Note that we index the transformer with F when
we refer to the strongest postcondition for the FOL do-
main, as we de�ned it in Section 2. � implements do-
main speci�c implication checking. � joins elements so
that, F � �G � H� must imply F � G or F � H. �
is the smallest (strongest) element of D used to initialise
in the initial assertion hypothesis, while � is the largest
(weakest) element of the domain.
Using FOL as static analysis algebra naturally maps�D, sp,�,�, �� to �F , spF ,�,-, false�where F is the set

of valid FOL formulas. But FOL is a problematic choice
as static analysis algebra. In general, when used with for-
ward propagation it does not guarantee the termination
of p�. Remember from LimLinSearch that each iter-
ation around 2© caused a new fragment of knowledge
about states at 2© to become available. Usually, it had
the form i � n , �i � 1� � SaS , a�i � 1� x e. We had
to adjoin this new knowledge to the assertion of 2© un-
til we encountered a boundary for i. If this boundary is

statically unknown – as it is with the expression i � SaS
in LinearSearch – we are never able to conclude that
i � SaS can not hold as we were able with �i � 1� � 3
when we had arrived at i � 4 in LimLinSearch. Hence,
the loop of knowledge propagation around 2© never
stops for LinearSearch. Notice that with FOL, for-
ward propagate is nothing else than symbolic interpre-
tation.
Scrutinizing the assertion generated in non-

terminated cases reveals that these node assertions are
in�nitely ascending chains in�. Whether there exists
in�nite ascending chains depends on the domain and
the join operator. In the next section, we examine two
di�erent algebras, namely Interval Analysis and Karr’s
Analysis. Both terminate when used with forward prop-
agation, however when compared to FOL, they are not
as precise. �erefore, the assertion derived from both
analysis might not be the strongest @post-condition
that a human might be able to derive.

7 Applied Analysis: Interval Analysis

In contrast to the preciseness of FOL, Interval Analysis
(IA) is a very rough description of program states. IA
describes a program state by associating each variable
with an interval �a, b�, where a, b > Q� and Q� � Q 8��ª,ª�. �ese state functions serve as the domainDI ,

D � �x , y, . . .�� �Q� ,Q��.
Such a function maps variables x,y into intervals. We
use the regular substitution notation to express modi�-
cations of this function. If there is no proper knowledge
about a variable, its interval is ��ª,ª�. �I is a func-
tion that maps all variables to the interval ��ª,ª�. If
any variable maps to �ª,�ª� the state can be simpli-
�ed to �I , the smallest element of the domain. Its mean-
ing is similar to FOL’s false, namely it labels unreachable
code.
For intervals, we de�ne two projection functions that

are typographically written as over- and underlined ex-
pressions: �a, b� �� a �a, b� �� b

Next we de�ne an interval arithmetic evaluation func-
tion

JeK � A � DI � �Q� ,Q��
thatmaps arithmetic expressions inA into intervals with
the help of the state function. �e arithmetic expressions
of π are covered as follows:
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Scalar values c: JcKs � �c , c�
Variables x: JxKs � s x.

Linear functions : Unary function f in Q can be li�ed
cheaply to interval arithmetic

J f �x��Ks � �min� f �a�, f �b��, max� f �a�, f �b���
where JxKs � �a, b�. �isworks likewise for a linear
binary function b:
Jx b yKs � �min�a1 b b1 , a1 b b2 , a2 b b1 , a2 b b2�,

max�a1 b b1 , a1 b b2 , a2 b b1 , a2 b b2��
where �a1 , b1� � JxKs and �a2 , b2� � JyKs. Likewise
this works with n-array functions with the respec-
tive number of argument permutations.

Non-linear functions like x2 evaluate to ��ª,ª�.
Mappings from existing FOL to IA and vice verse is im-
portant as this is π’s annotation language.�

v>Dom�F�s�v� � v , v � s�v�
is the respective FOL representation of a IA state func-
tion. Mapping FOL formulas into IA only works for
those fragments that are ,-connected and have the form
x B y or x � y. To save a bit of de�nition work, we as-
sume that

• x � y is expanded into x B y , y B x,

• ,-connected FOL expressions are simpli�ed to a
series of assume statements, and

• variables occurs as the only literals on its side of an
inequality, e.g. 5 � 10x gets rewritten to 1

2
� x.

With these tricks it is su�cient to de�ne only,

spI�s, assume c B x� �� s�x~�max�c , s x�, s x��
spI�s, assume x B c� �� s�x~�s x , min�c , s x���

Assignment is the evaluation of the arithmetic expres-
sion e in the original program state s followed by replac-
ing the assigned variable in the program state s with the
evaluation result:

spI�s, x:=e� �� s�x~JeKs�

A state s implies a weaker state s� if every variable in s�
is mapped to a bigger interval than the respective map-
ping in s.

s� s� 
� �v > Dom�s�� � s v b s� v
As the subset relation is decidable by inspecting the in-
tervals bounds, implication checking in IA is decidable.
Finally, we de�ne the join operator in the IA algebra:�s � s��x � �min�s x , s� x�, max�s x , s� x��
A �nal problem with interval arithmetic remains,

namely that the no-ascending chain property is not
guaranteed. �e following simple loop example demon-
strates this problem:

assume i = 0;

assume n C 0;

while (i<n) {

i:=i+1

}

�e initial interval for i is �0, 0�. �e strongest postcon-
dition of the loop body is �1, 1� for i a�er one iteration.
As the initial interval �0, 0� does not imply �1, 1�, we have
to join these two intervals: �0, 1�. Another loop iteration
gives �1, 2� as new interval, which is again not implied
by �0, 1�. Hence, we adjoin it to get to �0, 2� and so on.
As the loop is bound by a statically unknown variable n,
this process never stops.
�erefore, we rede�ne the join operator a bit

to overestimate the interval of its variables non-
deterministically,�s �I s

��x � ¢̈̈�̈̈¤�s � s��x if widen() = false�l , u� if widen() = true

with

l � ¢̈̈�̈̈¤�ª s� x � s x

s x otherwise
u � ¢̈̈�̈̈¤ª s� x A sx

s x otherwise

With the help of this sometimes overestimating join op-
erate, interval analysis infers correctly that i has no stati-
cally known upper bound. Although for loops with stat-
ically known but large boundaries as i � 1000, IA might
overestimate the range of i.

8 Applied Analysis: Karr’s Analysis

Karr’s Analysis captures linear relations among variables
of the form

c0 � c1x1 � � � � � cnxn � 0 (4)
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for c i > Q and the program variables xi . �is analy-
sis rests on the concept of a�ne spaces. �ere are two
equivalent representations of a�ne space. Either as a se-
ries of constraints in the form (4) or as a set of vectors
V � �v1, . . . , vk� that generates the space with

a�ne�V� � �Q
i

λiv i¡ where Q
i

λi � 1

�e vector set is easier to manipulate so we choose vec-
tor sets to represent program states in this analysis. By
solving the linear equation system�V

1
� λ � �������x1x2�xn1 �������

we can convert the vector representation back into a
constraint representation.
For simplicity, we disregard the information con-

tained within assume statements, and de�ne the
strongest postcondition spK only over assignments. Fur-
thermore, we have to restrict our attention to a�ne as-
signment which have the form

xk �� c0 � c1x1 � � � � � cnxn .

To change the program state captured as the set of vec-
tors, we apply the following transformation function

f �x� � ���������� 1
1 �

c1 c2 � cn�
1

��������������������x1x2�xk�xn���������� � ����������
0
0�
c0�
0

���������� (5)

to all elements of the set. If the assignment contains a
non-a�ne expression, we conduct two transformations
xk �� 0 and xk �� 1 and join the resulting vectors sets.
�e result is that the variable xk is unbound in the a�ne
space.
�e� operator is de�ned as the union of the set-union

of both vector sets. �e smallest element �K is the empty
set, , while the largest element �K is the set of unit vec-
tors. For vectors with three elements, this is:¢̈̈̈�̈̈̈¤���100��� ,

���010��� ,
���001��� ,

���000���£̈̈̈§̈̈̈¥ (6)

Implication checking, F � G is decidable by check-
ing whether all vectors in F are in a�ne(G). �is is

equivalent to �nding vectors λ such�v > F .§λ. �G
1
T� λ � �v

1
�

Satisfying this equation for λ is e�ciently decidable by
using Gaussian elimination. If all v > F are in a�ne(G)
then, F � G.
Consider the following example

i=0; j=0; k=0;

while (?) {

k:=k+1;

if (??)

i:=i+1;

else

j:=j+1

}

As we will show, Karr’s Analysis can discover the induc-
tive invariant i � j � k at the loop’s body. �ere are three
basic paths here: the initial block of assignments, the
loop’s body with the conditional’s then-branch and the
loop’s body with the false-branch.
According to (5), the combined transformations from

the initial assignment is

τ1
���0 0 0
0 0 0
0 0 0

������ ijk��� � ���000���
Applying this transformation to all elements of the unit
vector (6), reduces the set of vector to just 0:�0� � ¢̈̈̈�̈̈̈¤���000���£̈̈̈§̈̈̈¥
�e transformations for the other two basic paths,

k:=k+1; i:=i+1 and k:=k+1;j:=j+1, have the fol-
lowing to transformations:

τ2 � ���1 0 0
0 1 0
0 0 1

������ ijk��� � ���101���
τ3 � ���1 0 0

0 1 0
0 0 1

������ ijk��� � ���011���
Although the forward propagation algorithm propa-
gates to one branch and then to the other, we treat both
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(a) �e vector set ��0, 0, 0�T , �1, 0, 1�T � projects the
line i � k
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(b) �e vector set ��0, 0, 0�T , �0, 1, 1�T � projects the
line j � k
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(c) �e vector set ��0, 0, 0�T , �1, 0, 1�T , �0, 1, 1�T �
projects the plane i � j � k

Figure 10: A�ne spaces induces by vector combinations

in parallel, as this make the symmetry in the arguments
more obvious. Applying τ2 and τ3 transformations to 0
gives:

τ20 � ���101��� τ30 � ���011���
As both are not implied by 0 we add both results to

the asserted vector set at the loop. Figure 10 displays the
a�ne space induced by combining 0 with these results
one at a time. �e then-branch gives �0, τ20� and if con-
verted back to constraints gives i � k as restriction. �is
restriction is clearly visible in (a). �e false-branch gives�0, τ30� which results in the restriction j � k as seen in
(b). Combining these two restrictions induces a pane in
the a�ne space described by i � j � k, as seen in (c).
We observe that

τ2τ30 � τ3τ20

so the reiterating both new results with the respective
other transformation gives the same result �1 1 2�T
however this results is redundant,��1����000��� � 1

���101��� � 1
���011��� � ���112���

Reiterating further with τ2 and τ3 gives the redundant
vectors ���202��� � 2

���101��� � ��1����000������022��� � 2
���011��� � ��1����000���

Hence we have found an inductive annotation at (2):¢̈̈̈�̈̈̈¤���000��� ,
���101��� ,

���011���£̈̈̈§̈̈̈¥ ,

which translates into the restriction i � j � k.
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